
The bc calculator

E. Krishnan

Most Linux distributions include the Unix utility named bc. (It stands for bench calculator, as against
the older Unix dc or desk calculator) It is an arbitrary precision, programmable calculator, run from the
command-line. Let’s take a quick look at some of its simple uses before moving on to more advanced
features.

Basic usage

To start bc, type bc at the command-line. (In a gui interface, open a terminal and type bc at the
prompt). On pressing the Enter key, we get a welcome message and the cursor rests below it:

bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.

Now type this:

((1+2)*3-4)/5

On pressing Enter, we get 1 as the answer, in the next line.

Next try

4/5

The answer we get is 0 ! What is happening here?

By default, bc sets the number of decimal places in a quotient as 0; thus 4/5 gives 0 and 5/4 gives 1.
This is sometimes useful, for example, if we want to split the result of a division in integer quotient and
remainder. Thus we type

3476/23

to get the integer quotient 151 and type

3476%23

to get the remainder 3, so that we can write

3476 = (23× 151) + 3

To get the result of a division as a decimal, we have to set the scale variable (whose default value is 0).
Type

scale=2

and try 4/5 again. We then get .80 as the answer. (Here’s a trick: instead of retyping a previous
command, press the up-arrow key; by repeatedly pressing this key, we get all the earlier commands,
starting from the latest.)

Now type

1

scale=100

and then

sqrt(2)

This gives

1.414213562373095048801688724209698078569671875376948073176679737990 \
7324784621070388503875343276415727

which is
√

2 correct to 100 decimal places! (Remember the adjective arbitrary precision?) Try setting
scale=1000 and then sqrt(2) again. This raises the question: how many digits can we get after the
decimal point? The answer is 2147483647, which is 231 − 1.

Apart from changing scale, we can also change the base in which input and output are represented, using
the variables ibase and obase. Thus to convert the decimal number 123 to binary, we type the commands
below one by one, pressing Enter after each:

bc

obase=2

123

and we get

1111011

We can change back to decimal output with obase=10. In much the same way, to convert from binary
to decimal, we type:

bc

ibase=2

101

which gives

5

In this case, ibase=10 does not change back to the decimal as the following sequence of commands will
show:

ibase=10

10+1

This gives 3 and not 11, as expected. The trouble is that since all inputs are now read as binary, the 10
in obase=10 is treated as a binary number, that is 2 again! The way to change back is

obase=1010

since 1010 is the binary representation of 10. (Or more generally, we can do ibase=A, where A is treated
as the hexadecimal number 10. The hexadecimal, or hex for short, is base 16 number system, in which
the alphabets A to F stand for the decimal numbers from 10 to 15)

To quit bc, simply type quit and press Enter; or press the Ctrl and the d keys together. Also, if we don’t
want to see the welcome message at start-up, we can run bc with the -q option, as bc -q.

2

Higher math

There is a standard math library available with bc. To use the commands available in it, invoke bc with
the option l (the English letter ell and not the number one) as

bc -l

This sets scale to 20 (which we can increase, if need be) and makes the following commands available:

s(x) sine of x radians
c(x) cosine of x radians
a(x) arctangent of x, given in radians
e(x) ex

l(x) natural logarithm of x

and a few others. Thus to get the value of e to 100 decimal places, type the following sequence of
commands (pressing Enter after each).

bc -ql

scale=100

e(1)

How do we get the famous π? Remember that

tan−1(−1) = 1
4π

so that
π = 4 tan−1(1)

Thus using the command

4*a(1)

we get the value of π correct to the number of decimals set by scale. For example, with scale=100, we
get

3.141592653589793238462643383279502884197169399375105820974944592307 \
8164062862089986280348253421170676

(Here’s is something funny: set scale=360 and try 4*a(1). The last three digits are 360, right? Another
relation between π and 360 !)

What if we want to compute sin 40◦ ? Using the conversion,

1◦ =
π

180
rad

we can use bc to do this job by typing

s((4*a(1)/180)*40)

If we want to compute the sine of a good number of angles given in degrees, the above method becomes
a bit tedious. We next see how such tasks can be automated.

New functions

Apart from the functions listed above, bc allows us to define our own functions. Suppose we want a
function, which computes sinx◦ instead of sin(x rad), as s(x) does by default. Let’s name this function

3

sd. For any given number x, we want sd(x) to compute the sine of x◦. We have s(x), which computes
the sine of x rad. Using the conversion from radian to degrees, we need only set

sd(x) = s
(π

180
x
)

How do we tell bc this? We type

define sd(x){return s((4*a(1)/180)*x)}

and press Enter. Then for this entire bc session— that is, till we type quit to stop bc—we can use sd to
compute the sines of angles in degrees.

As another example, suppose we want to compute 3
√

2. We have seen that bc has the sqrt function to
calculate square roots, but cube roots are not built into it. Also, the operation x^y, which computes
powers, works only for integral values of y. So, we define a new function to compute xy for any x and
y, as in any scientific calculator. (But remember, no scientific calculator can give answers correct to
2147483647 decimal places!)

We first note that for any real numbers x and y with x > 0

xy = ey ln(x)

where ln(x) is the natural logarithm of x. Since, we have e(x) to compute ex and l(x) to compute ln(x)
in bc, we can use them to define a power function p(x, y) to compute xy as follows:

define p(x,y){return(e(y*l(x)))}

Then

p(2,1/3)

gives

1.2599210498948731647

which is 3
√

2 correct to 20 decimal places. And p(e(1),4*a(1)) gives eπ (correct to 20 decimal places)
as 23.14069263277926900427

Now suppose we want the sine values of 1◦, 2◦, 3◦, 4◦, 5◦. We can type sd(1), sd(2),. . . in succession.
But there’s an easier way, which we discuss next.

Programming

We mentioned at the beginning that bc is a programmable calculator. Thus it has various programming
constructs such as loops and conditionals. Let’s consider the problem of listing sine values mentioned
above. We do this using the for loop. Call bc -l and define sd(x) as before. Then type

for(x=1;x<=5;x++)sd(x)

This would give the five sine values one below the other. The only piece of the above code that requires
an explanation is the x++ part. It means “increment the value of x by 1”. (Note also that different parts
of the code are separated by semicolons.) Thus the program computes sd(1), then increments 1 to 2 and
computes sd(2) and so on till sd(5).

As an example of using a conditional, let’s see how we can use bc to compute factorials. Note that we
can define

f(n) = 1× 2× 3× · · · × n

recursively as

f(n) =

{
1, if n = 1

nf(n− 1), otherwise

This we state in the language of bc as follows:

4

define f(n){if (n==1) return(1); return(n*f(n-1))}

Now typing f(10) gives 1× 2× 3× · · · × 10 as 3628800.

Note especially the use of double = in the definition above. The expression n==1 checks whether the
relation n = 1 is true for the number x. (The expression x=1 simply assigns the value 1 for the variable
n.) Also, the alternative return(n*f(n-1) is given without any preceding “else” or “otherwise”.

As another instance of bc programming, recall how we defined the p(x, y) function to compute xy.
This definition has a minor flaw; if we give 2 as the base and 3 as the exponent, then we get 23 as
7.99999999999999999982 and not 8. One (rather unsatisfactory) solution to this problem is to use the
built-in function x^y for integral values of y and the function p(x,y) otherwise. A more elegant method
is to modify p(x,y) to take care of both situations.

For this, we must first have a method for bc to check whether a given number is an integer or not. The
idea is to extract the integer part of a number and then to compare it with the original number. To do
the first, we recall that if scale is set to 0, then division gives only the integer part. So, we can try

define i(x){scale=0;y=x/1;return(y)}

and this gives, for example, i(3.45) as 3. But this has the undesirable side-effect of setting scale to 0,
so that we have to manually reset it to the original value. To overcome this, we resort to a routine trick
in programming, storing the value of a variable in another temporary variable. The following bc session
will make the idea clear. (Here the inputs typed are given in typewriter font and the outputs of bc in
sans serif, as we have been doing throughout this article.)

x=4;x

4
temp=x;x;temp

4
4
x=5;x;temp

5
4
x=temp;x;temp

4
4

The crucial point is that in the third input, though x is changed to 5, the variable temp retains its original
value 4. Keeping this in mind, we can modify i(x) as follows:

define i(x){s=scale;scale=0;y=x/1;scale=s;return(y)}

The trouble with this is that the variables s and t retain their values once i(x) is used (as can be verified
by typing s or y after this command is used.) To make them “local”, we use the auto prefix. Thus the
final code is:

define i(x){auto s,y;s=scale;scale=0;y=x/1;scale=s;return(y)}

Once this definition has been made, we can modify our p(x,y) as below:

define p(x,y){if (i(y)==y) return(x^i(y));return(e(y*l(x)))}

We next see how certain features of the command-line makes working with bc quicker and more flexible.

Working with shells

The Linux command-line is the basic interface between the user and the operating system and is actually
a programming environment. It is usually called a shell. Several types of shells are available and the one

5

most commonly used is the bash. (It is an abbreviation of Bourne Again SHell which in turn is a pun on
the Bourne Shell developed by Stephen Bourne for Unix systems.)

One basic feature of bash (or any other shell) is that we can combine commands, passing on the result
of one to another. For example, the echo command simply echoes its argument onto the terminal. For
example, typing

echo "Hello"

gives back Hello on the terminal. Now try

echo "2+3"|bc

This gives 5. Here the | symbol (called a pipe) is used to pass the output of echo "2+3", which is 2+3,
to bc which in turn does the computation and gives 5. Thus

echo "define h(x){if(x==1)return(1);return(h(x-1)+1/x)}h(100)"|bc -l

would compute the sum 1 + 1
2 + 1

3 + · · ·+ 1
100 as

5.18737751763962026041

Instead of displaying the result on the terminal, we can write it to a file by typing

echo "define h(x){if(x==1)return(1);return(h(x-1)+1/x)}h(100)"|bc -l>sum.txt

we get a file sum.txt containing the result of this computation. The > is said to redirect output, in this
case to a file. If we want to append this number to the end of an already existing file (without overwriting
its contents), then we should use >> instead of >, as in

echo "define h(x){if(x==1)return(1);return(h(x-1)+1/x)}h(100)"|bc -l>>sum.txt

We can also get the result on the terminal and write it to a file using the tee command, which reads from
the terminal and writes to both the terminal and a specified file (Recall what a T pipe does in plumbing).
Thus

echo "define h(x){if(x==1)return(1);return(h(x-1)+1/x)}h(100)"|bc -l|tee sum.txt

would display the number above in the terminal and write it to the file as well. Again, if we want the
output to be appended to a file, we use tee with the -a option, as in

echo "define h(x){if(x==1)return(1);return(h(x-1)+1/x)}h(100)"|bc-l|tee -a sum.txt

Finally, we see how we can customize bc include our own favourite operations.

Extensions

The new functions we define during a bc session last only till we quit the session. That means, everytime
we use bc, these must be redefined. We next see how we can have our definitions available every time we
start bc.

We can put all our reusable definitions in a file and load it on bc start-up, much as the switch -l loads
the math library. For this, we create a file, say extensions.bc, containing these definitions, with a text
editor such as gedit or Emacs (but not a word processor like OpenOffice Writer, unless we save it as a
text file) and call bc by

bc -l extensions.bc

6

This allows us to use all the definitions in the file extensions.bc. We can even rename this entire command
as ebc or something. To do this, we first copy the file extensions.bc to the bin directory under our home
directory. Then we create a text file named ebc containing just the line

bc -ql ~/bin/extensions.bc

and make this executable with the command

chmod a+x ebc

After this, if we call ebc, we get bc with the math library and our own extensions loaded. For this to
work, the bin directory under our home directory must be included among the various directories which
bash searches for executables. We can check this by typing echo $PATH. If the output does not contain
$HOME/bin, then we add the lines

if [-d "$HOME/bin"] ; then

PATH="$HOME/bin:$PATH"

to the .profile file under our home directory.

In creating extensions, it is a good idea to name the defined functions as factorial or power, so that
more generic names like f or p can be used for other temporary functions. Thus for example, we may
define in our extension file,

/* To find the integer part of a number */

define int(x){

auto oldscale,y

oldscale=scale

scale=0

y=x/1

scale=oldscale

return(y)

}

/* To find powers of numbers */

define power(x,y){

if (int(y)==y)

return(x^int(y))

return(e(y*l(x)))

}

Note that the different commands within a definition are not separated by semicolons; this is not necessary
if each command is on a line by itself. Also, it is a good practice to give comments on each definitions,
enclosed between */ and */ as above. It would be a great help when you share your extensions with
others, in the true spirit of Free Software.

7

